Elec 528 – Programming Exercise #5

Due: 3/17/03

Create Phase 7 of the forwarding code, which will add MPLS Processing functions to the existing IP Switch/Router. This will be built on the code of Phase 6, as we will continue to forward packets at Layer 2 and Layer 3. Ethernet Source addresses are to be learned as before.

Packets with an EtherType of MPLS (0x8847 – handle Unicast only) will have the top Label in the MPLS Label Stack looked up in the MPLS Table. The first level, which contains four byte entries indexed by the MPLS Label, is held in DRAM beginning at address 0x40000 (for this exercise only the first 256 entries are used, but in normal routers this table may contain up to 1M entries). MPLS Buckets and Extension Blocks as defined below are held in DRAM beginning with location 0x40400. The result of the Level 1 lookup is in the following format.

	
	Bit Positions

	Word
	31
	
	24
	23
	17
	16
	15
	13
	7
	6
	5
	4
	3
	2
	1
	0

	0
	Pointer
	0
	0
	0
	E
	P

If the P(tr) bit is a one, the Pointer field contains the address of an MPLS Bucket. If P is a zero and the E(rror) bit is a zero, the Pointer field contains the address of an MPLS Extension Block. If P is zero and E is one, there are no known MPLS routes for this Label. The packet should be discarded and the MPLSNOLBL counter should be incremented.

The MPLS Bucket is very similar to an IP Bucket, and has the following format.

	
	Bit Positions

	Word
	31
	
	24
	23
	17
	16
	15
	12
	11
	6
	5
	4
	3
	2
	1
	0

	0
	Label 0
	Zeroes
	MOP

	1
	Label 1
	Zeroes

	2
	Zeroes
	MAC Address [47:32]

	3
	MAC Address [31:0]

	4
	Zeroes
	POM
	0
	0
	Channel

	5
	Packet Counter

	6
	Byte Counter Lower Word

	7
	Byte Counter Upper Word

Words 2 through 7 are the same as in the IP Table. The MPLS Data is in the first two words.

MOP – the MPLS Operation to be preformed on the packet, with the following codes.

00 – NOP – do not modify the MPLS Labels

01 – POP – pop the top label from the Label Stack

10 – SWP – Swap Label 0 with the top Label of the Stack

11 – PSH – Swap Label 0 with the top Label of the Stack and then push Label 1 onto the Label Stack.

Label 0 and Label 1 contain the Labels used in the above operations.

POM and Channel - the output port for packets with this destination IP address.

MAC Address – the Destination Ethernet address to be used for this packet.

The counters are not used in this exercise.

If a pop removes the last entry in the Label Stack, the packet must be converted back to an IP packet.

For each packet, the TTL must be decremented by 1. If the result is an IP packet, the IP TTL should be replaced with the decremented MLPS TTL and the checksum adjusted accordingly. The Ethernet DA of the packet must be replaced by the MAC Address value from the bucket, and the Ethernet SA must be replaced by the appropriate Station Address. The Ethernet CRC must be removed by decrementing the packet length by four bytes, and it must be regenerated by setting the USR1 bit in the Output Descriptor.

Extension Blocks

An MPLS Extension Block is a 32-byte structure containing eight entries in the following format.

	
	Bit Positions

	Word
	31
	
	24
	23
	17
	16
	15
	13
	7
	6
	5
	4
	3
	2
	1
	0

	0
	Pointer x 4
	PIM
	FN
	Channel

Once an Extension Block is fetched, as specified in the Level 1 entry, each entry is successively compared to the input PIM and Channel of the packet. The FN field defines the operation to be performed, as described below.

00 – CMP – Compare the PIM and Channel. If there is a match, fetch the MPLS Bucket pointed to by the Pointer field (shifted right 2 bits).

01 – DEF - Fetch the MPLS Bucket pointed to by the Pointer field (shifted right 2 bits) independent of the PIM and Channel.

10 – EXT – The Pointer field shifted right 2 bits points to another (2nd Level) Extension Block. The search should continue with this Block.

11 – DIS – There are no more Extension Block entries. If the PIM and Channel have not matched, discard the packet and increment MPLSBADPRT.

IP to MPLS Translation

The IP Forwarding Table from Phase 6 is enhanced slightly to allow for IP to MPLS translation. If the D(one) bit is set in a pointer entry (thus indicating that this is a Route Pointer), the M(PLS) bit in bit 1 will be one if the Route Pointer points to an MPLS Bucket, and zero if it points to a normal IP Route Bucket. If the M bit is set, the MPLS operation must be to push Label 1 onto the Label Stack, and make the MPLS TTL equal to the IP TTL minus one.

Packet Discard

The following packets should be detected, counted as described above, and then discarded. A new version of SENDPKT is in the project_phase6.asm file, which will really discard a packet (rather than send it to POM 3, Channel 6) if bit 10 of r8_QUEUE is set. This discard function should be used for all MPLS discards, but NOT for discards from previous Phases.

MPLS TTL = 0 or 1

MPLS Label doesn’t exist in the Level 1 Table

MPLS Bad Input Port – there is an entry for the Label but no matching input port.

There is a new version of PktGen.exe in my Elec528/Phase7 directory, along with a new document. This version can be configured to generate a variety of MPLS errors and packet types. It also has the capability to generate the MPLS Forwarding Table from an

MPLS Address.txt file, similar to the Ethernet Address.txt file. As before, an IPPkt000.tcl file and corresponding CheckSums.txt is supplied. The project_phase6.asm file contains useful comments describing the MPLS Forwarding Table.

Statistics

The following statistics should be counted, with counter names and addresses specified (new counters for this Phase are denoted with a “*”). Note that some memory locations of counters used in previous Phases have changed. The #define block in my project_phase6.asm contains these definitions.

PKTCOUNTER
0x1000

Total packet counter

DISCARDCNT
0x1004

IP Discard packet counter

IPv6COUNT

0x1008

IPv6 packet counter

OPTIONCNT

0x100C

Count of IP Option words

MPGENCNT*
0x1010

MPLS packets created from IP

POPCNT*

0x1014

MPLS Pops

SWPCNT*

0x1018

MPLS Swaps

PSHCNT*

0x101C

MPLS Pushes

MPDISCARD*
0x1020

MPLS packet discards

MP2IPCNT*

0x1024

MPLS packets converted to IP

MPCMPCNT*
0x1028

Input Match MPLS routes

MPTTLCNT*

0x102C

MPLS TTL = 0 or 1

MPLSNOLBL
*
0x1030

MPLS Label not in Level 1 Table

MPLSBADPRT*
0x1034

MPLS Bad Input Port

MPLSTOTAL*
0x1040

Total number of MPLS packets

EBRPTCNT*

0x1044

Access to 2nd Level Extension Block

BROADCAST
0x1070

Broadcast packet counter

An “Input Match MPLS Route” occurs when the PIM and Channel values match the entries in the MPLS Table (i.e. a route does not use the Default PIM/Channel value). “Bad Input Port” means an MPLS packet for which there is an entry in the table but no PIM/Channel match.

Note: SWPCNT also includes cases where MOP = NOP, and POPCNT does not include cases where the pop results in an IP packet being created (there are counted in MP2IPCNT). Thus the following equation should always hold (for each PPE and the total):

MPLSTOTAL = MP2IPCNT + POPCNT + SWPCNT + PSHCNT + MPDISCARD

Debugging

The test file for this exercise is still named IPPkt000.tcl as generated by PktGen, so the test sequence is similar to that for Phases 5 and 6. The Pkt000.tcl file will be the same, so the CheckSums.txt files you generated should still compare when you regress by running allppes -> e1 -> e2. The Phase5/6 test will be to then run:

rlog

log2file

e3

and check against the CheckSums.txt file from Phase6. This will verify the regression of the Phase5 and 6 functions. Finally, execute

rlog

log2file

e6

and check the new CheckSums.txt file in my Phase7 directory. This runs the MPPkt000.tcl file. Note that until the final test, you can run e6 immediately after source z.tcl, or after allppes – the result should be the same.

The IPErrPkt.tcl file (which runs with e4) now includes each of the MPLS errors, and in addition has a packet for each type of MPLS operation. Initial checking should start with this file, checking against CheckSumsErr.txt.

The MPPkt000_hex.txt file which is always produced is invaluable here – the end of each line tells you what (if anything) is special about that packet. These have been updated to correctly display the MPLS functions.

To verify the new counting functions, look at Counters.txt in my Phase7 directory. This shows the values which should be in each of the counters after you run ONLY e6 after source z.tcl. This file will not be correct if e1, e2 or e3 are run first. It contains the sums of the values in all four PPEs, or the value in PPEA if you don’t do allppes (recommended for testing this function).

As before, I suggest that you get everything working with one context first. This exercise should not have any new multiple context dependencies.

